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Abstract

This paper undertakes a replication in a wide sense of Alesina et al. (2013),

which examines the relationship between historical plough agriculture and current

gender roles. We revisit the main research question with recently developed causal

machine learning methods, which allow to model the relationship of covariates

with the treatment and the outcomes in a more flexible way, while also including

interactions and nonlinearities that were not considered in the original analysis.

Our results suggest an even larger negative effect of the historical plough adoption

on female labor force participation than what the original analysis found. The

paper highlights the benefits of using causal machine learning methods in applied

empirical economics.
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1 Introduction

Beliefs about the appropriate role of women in society are very different across

regions. These disparities can be observed by analyzing, for instance, differences

in labor force participation for women across societies. Choices about female labor

supply have been shown to be partially explained by culture and norms (Fernan-

dez, 2007; Fernández and Fogli, 2009). Thus, investigating the origin of gender

norms is very important to understand the reasons behind these differences and

assess whether appropriate policies can be implemented to reduce them (Hansen

et al., 2015).

The paper by Alesina et al. (2013) is a seminal contribution addressing the

question of the historical origins of gender roles. The authors test the hypothesis,

originally developed by Boserup (1970), that today’s gender norms have their

roots in the agricultural practices that prevailed in pre-industrial times. The

hypothesis compares the roles of shifting and plough cultivation. Since operating

the plough requires considerable physical strength, men have an advantage in

plough cultivation compared to women; in contrast, women could more easily

participate in shifting cultivation, in which the use of the hoe and the digging

stick are prevalent, and there is higher need for weeding, which was traditionally

performed by women and children. Thus, where plough agriculture was prevalent,

gender division of labor was more common. This division of labor would persist

over time until the present day.

In this paper, we perform a replication in a wide sense by revisiting the main

research question in Alesina et al. (2013) with new causal inference tools, namely

causal machine learning (CML) methods. To this end, we connect the econometric

theory on CML with empirical economics, serving as an illustration for applied

researchers on the gains of implementing these newly available methods in obser-

vational studies. In our replication study, we employ the double/debiased machine

learning method (DML) introduced in Chernozhukov et al. (2017, 2018), which

provides consistent estimation and valid inference on the average treatment effect

(ATE), in settings where high-dimensional nuisance parameters are estimated with

machine learning methods. In our analysis, we combine the DML framework with

the following machine learning methods: lasso, trees, neural net, random forest,
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boosting and two hybrid methods: ensemble and best. Empirical economics stud-

ies that started to employ this method include Knaus (2018), Dube et al. (2020),

Xu et al. (2021) and Baiardi and Naghi (2022), among others.

We revisit the question in Alesina et al. (2013) with CML tools because the

functional form of the relationship of the confounders with plough use and gender

norms is unknown, and guidance from economic theory or previous literature

regarding the nuisance functions is limited.1 CML methods are designed to flexibly

estimate and capture complex interactions between the outcome, treatment and

confounders, which is important when drawing causal conclusions based on the

assumption of unconfoundedness. In addition, the original analysis undertaken

with traditional causal inference tools (ordinary least squares and instrumental

variables) cannot include all raw covariates, interactions and nonlinearities at once,

because the number of confounders would be too large relative to the sample size.2

In contrast, CML methods can handle a large number of covariates relative to the

sample size, for example, by using regularized regressions, and thus can control at

once for all potentially relevant linear and nonlinear confounders.

Our DML estimation results for the effect of plough cultivation on gender roles

show a negative and significant effect, confirming the main findings in Alesina et al.

(2013). In fact, the estimates suggest an even larger effect of the plough adoption,

compared to the original findings. We attribute these differences to causal machine

learning methods being able to capture more flexibly the effect of a large number

of covariates.

In what follows, section 2 familiarizes the reader with the revisited paper and

presents a description of the original analysis. Section 3 briefly describes the

recently developed DML method that we implement, and presents the results of

the replication in a wider sense. Section 4 summarizes some lessons learned from

revisiting the paper with CML methods. The Online Supplementary Material

includes details on the implementation of the CML methods used, as well as

sensitivity analysis results.

1Other topics in applied economics, such as estimating the wage equation, or the gravity
model, have been analyzed much more extensively, and researchers interested in these topics can
benefit from more guidance from previous research regarding the functional form of the nuisance
functions.

2For example, note that only a limited number of pre-specified nonlinear terms are included
in Alesina et al. (2013).
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2 Description of the Original Analysis

Alesina et al. (2013) consider several empirical strategies and data sets, and

present results using country-level and individual-level regressions. Then, to tackle

possible endogeneity issues, the paper follows two approaches: first, several poten-

tial confounders are included in the regressions; second, an instrumental variable

(IV) strategy is used. We revisit the main question addressed in the original paper,

focusing on the country-level results, as the majority of the regressions reported

in the original paper are based on this data.

The baseline ordinary least squares (OLS) country-level results in the original

analysis (reported in Table 4 of Alesina et al., 2013) are obtained by estimating

the following regression:

yc = α + βplough usec + XH
c Γ + XC

c Π + εc,

where c stands for country. In the paper, three outcome variables are examined

as measures of gender roles: female labour force participation, attitudes about

women’s work, and attitudes about women as leaders. The first outcome variable

is an indicator variable that equals one if the individual is in the labor force in

2000; the second is the share of firms with a woman among its principal owners in

the period 2003-2010; finally, the third is the proportion of seats held by women in

the national parliament in 2000. The treatment variable, plough usec, is calculated

as the estimated proportion of individuals living in a country with ancestors that

used the plough in pre-industrial agriculture. The vector XH
c includes historical

ethnographic variables at the country level. These controls capture the historical

characteristics of ethnicities living in a country, and they are meant to account for

differences between ethnicities that historically adopted the plough and those that

did not. They include: ancestral suitability for agriculture, fraction of ancestral

land that was tropical or subtropical, ancestral domestication of large animals,

ancestral settlement patterns, and ancestral political complexity. The vector XC
c

denotes contemporary country-level controls: natural log of real per capita GDP,

and its square. These are included as the level of economic development is believed

to have an impact on female labour force participation, and the square of per

capita GDP is intended to capture the observed U-shaped relation between the
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two variables. Continent fixed effects are also added in some specifications.

As mentioned by Alesina et al. (2013), concerns about potential endogeneity

in the baseline regressions arise. It is possible that plough agriculture may have

been more common in countries that had less equal gender-role attitudes. This

would cause the OLS estimates to be biased away from zero. Moreover, plough

agriculture may have been more likely in areas where economic development was

historically higher. If historical and contemporary economic development are cor-

related, and more economically advanced countries tend to have higher female

labour force participation and more equal gender roles, OLS estimates may be

biased towards zero. To tackle these issues, the following two solutions are offered

in the paper.

First, motivated by the thought that the potential bias may be partly due

to observable characteristics, a number of additional controls are added to the

regressions. These include two groups of variables that may correlate with both

plough agriculture in the past and current gender roles: historical characteristics

of the ancestors of the current population living in a country, and current eco-

nomic, social and cultural characteristics of countries. We list these variables in

Section A of the Online Supplementary Material. Alesina et al. (2013) provide

the rationale for including each of these controls, and details on how the variables

are constructed.

Second, the authors use an instrumental variable approach, which exploits the

fact that plough adoption is correlated with the suitability of the land for cereal

crops that would benefit, and crops that would not benefit, from the plough. To

this end, two instruments for plough adoption are constructed, based on the anal-

ysis by Pryor (1985). The first is the suitability for ‘plough-positive’ (i.e. which

benefit most from the plough) cereal crops, and the second is the suitability for

‘plough-negative’ (i.e. which benefit least from the plough) cereal crops.3 Alesina

et al. (2013) show that the suitability for plough-positive crops, but not for plough-

negative crops, is positively correlated with the use of the plough. On the validity

of the exclusion restriction, the authors explain that the underlying assumption is

that the suitability for plough-positive and plough-negative crops only affects cur-

rent gender norms through the historical adoption of the plough; thus, the main

3See Alesina et al. (2013) for details on the data used and how the instruments are constructed.
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concern with the instrumental variable strategy is the possibility that suitable

areas for different crops could be correlated with geographic characteristics that

have an effect on gender norms through other channels. To address this, Alesina

et al. (2013) include in a robustness check a number of geo-climatic characteristics

(listed in the Online Supplementary Material).

3 Causal Machine Learning Analysis

We implement the DML method developed in Chernozhukov et al. (2017, 2018).

Following the notation in Chernozhukov et al. (2017), we consider the partially

linear regression model:

Y = Dθ0 + g0(X) + U,

D = m0(X) + V,

where Y is the outcome, D is the treatment variable, X are the set of covariates,

and U and V the error terms. The main equation of interest is the first equation,

where θ0 is the average treatment effect (ATE). The second equation links the

treatment to the covariates and keeps track of confounding effects. The functions

g0(X) and m0(X) can be highly nonlinear and are estimated with a variety of ML

methods.

Employing ML methods in this setting introduces bias due to regularization.4

This is because by regularization, the less important coefficients are shrunk to

zero which introduces a bias that transfers to the target parameter, similar to

the omitted variable bias. Bias due to regularization is controlled by solving two

prediction problems (hence the name ‘double/debiased’ machine learning). More

precisely, in the first step, a ML method is used to fit m0 in the second equation,

partialling out the effect of X from D and obtaining residuals V̂ . Then, a ML

method is used again to fit g0 in the first equation, partialling out the effect of

X from Y and obtaining residuals Ŵ . Finally, we run the residuals-on-residuals

regression, Ŵ on V̂ , to obtain an estimate of the low dimensional parameter θ0.

This is similar to a Frisch-Waugh-Lovell – style approach to estimate the target

parameter.

4This approach also introduces bias due to overfitting which is then mitigated with sample
splitting, see Chernozhukov et al. (2017).
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Chernozhukov et al. (2018) extend the partially linear regression model to a

partially linear IV model which allows for endogenous treatment. In this paper,

we refer to this model as DML - IV. The instrument can be scalar or vector.

Chernozhukov et al. (2018) also consider estimation of average treatment effects

when the treatment effect is fully heterogeneous (the interactive model and the

interactive IV model). We do not consider these extensions here as they require a

binary treatment and our treatment variable is continuous. Our DML estimates

are obtained with the Robinson-style ‘partialling-out’ score function (see Cher-

nozhukov et al., 2018), but we also perform sensitivity checks with the alternative

score function in the Online Supplement.

3.1 Results

In our analysis, we re-examine both the country-level OLS and IV regressions.

For the OLS analysis, we begin by estimating a DML partially linear model that

only includes the baseline set of controls as raw covariates. We then revisit the

robustness analysis of this specification, by including as raw covariates the largest

set of controls used in the robustness checks (this corresponds to Table 7, column

8 of the original paper), to which we also add the continent fixed effects.5 This

amounts to a total of 36 raw covariates. For the IV analysis, in addition to the

baseline controls and in line with the original paper, we consider the geo-climatic

characteristics the authors use in their IV robustness checks (Table A14 of the

Online Appendix of the original paper). In the original paper, the geo-climatic

characteristics are added linearly, in quadratic forms, and as linear interactions.6

To these variables, we again add the continent fixed effects.

Table 1 reports the results of the DML partially linear model that replicates

the baseline regression. In accordance with the original paper, the treatment

effect estimates are negative and statistically significant. Both the coefficients

and standard errors are close to those reported in Table 4 of Alesina et al. (2013)

5When revisiting the robustness analysis with DML, we include continent fixed effects, even
though the original paper did not include them in their most complete robustness checks. As
causal ML methods can handle a large number of covariates, we include all the covariates which
were considered in the original paper, to ensure that all potential confounders are taken into
account.

6In the original analysis, quadratic terms and linear interactions are not included in the same
regressions.
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(reproduced here for convenience in column 8 of Table 1), and reassuringly, fairly

stable across the ML methods. This indicates that the estimates are robust to

using a number of different ML methods to estimate the nuisance functions.

We find however very different results when carrying out the robustness analy-

sis of this baseline specification with the DML method. Panel A of Table 2 reports

the results. While the effect is still negative, albeit much smaller in absolute value,

statistically significance is now lost. Interestingly, when Alesina et al. (2013) in-

clude all covariates at once (the estimate is reproduced in the last column of our

Table 2), the treatment effect becomes smaller in absolute value, compared to

when groups of covariates are added separately (see their Table 7, columns 1 to

7), or compared to the baseline specification (reproduced in column 8 of our Table

1). With DML, the treatment effect of interest does not only become smaller, but

also statistically insignificant.7

Our findings up to this point would lead us to (mistakenly) conclude that the

negative effect of plough adoption on attitudes towards gender roles may not be

as large as suggested by the original analysis, and that the effect is not statis-

tically significant. However, our estimates from the DML partially linear model

may still be subject to endogeneity. While flexibly controlling for a large number

of covariates can account for the confounding effect of observed characteristics,

the remaining concern is that plough adoption may be correlated with unobserved

characteristics that also affect the outcome. The instrumental variable approach

suggested by Alesina et al. (2013) can alleviate this potential issue. We con-

sider the same instruments as in the paper (described above) and we turn to

re-evaluating the results by estimating a DML - IV model. Panel B of Table 2

reports the results. As in the original analysis, the estimated coefficients have

a negative sign, and they are now statistically significant at the 10% level for

most of the ML methods, with the exception of neural networks and ensemble.

It is interesting to note that the magnitude of the coefficients is larger than in

the DML partially linear model (both baseline and extended), supporting the hy-

pothesis that the OLS estimates are biased towards zero. This is consistent with

7To assess the robustness of the DML estimates to using other causal ML methods, we also
perform the analysis with the causal forest (Wager and Athey, 2018; Athey et al., 2019). The
implementation details are described in the Online Supplementary Material. Table B.1 in the
Online Supplement reports the results of the main OLS robustness check of Alesina et al. (2013).
The results show that the estimates are very similar to those obtained with DML.
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the original paper, which also finds that the IV coefficients are larger than the

OLS estimates. It is worth to further notice that compared to the IV results of

the original paper, our DML - IV findings suggest an even larger effect of the

plough adoption on female labour force participation. We attribute this to causal

machine learning methods being able to control for a large number of covariates

in a more flexible way.8 Overall, when looking at both the robustness analysis

and the IV analysis and comparing them to the baseline results, we notice that

our estimates move in the same direction as the original paper estimates, but our

estimates move even more, supporting the idea that DML controls more flexibly

for relevant covariates.

To investigate whether the instruments still have predictive power when flexibly

controlling for the confounders, we estimate the first stage of Table 2 Panel B,

using the partially linear model with treatment as outcome and the instruments

as treatments. The results are reported in Table 3.9 As in the original 2SLS

analysis, we notice a strong correlation with one of the two instruments (the land

suitability for plough-positive crops), but no significant correlation with the other

(plough-negative crops). Since plough-negative crops does not predict plough use,

we undertake a robustness check by estimating the model considering only plough-

positive crops as instrument for plough use; the results, shown in Table B.2 of the

Online Supplementary Material, are overall consistent with those reported in Table

2, Panel B.10

Our DML estimates are obtained by tuning the parameters of the ML methods

8As explained above, our DML specification differ from the original paper’s robustness anal-
ysis because it considers nonlinearities and it includes continent fixed effects. Therefore, the
differences between the DML and the original estimates could, in principle, be driven by the
continent fixed effects, and not by the nonlinearities. The original paper shows that adding
the continent fixed effects to the baseline specification leads to very small changes in the OLS
estimates (see Table 4 in the original paper), while it results in larger changes in the IV case
(see Table 8 in the original paper). However, even in the IV case, including the continent fixed
effects only increases the absolute size of the plough coefficient by 3-4 percentage points, while
the DML coefficients exceed the OLS and 2SLS estimates by more than double that amount
(with the exception of the neural network and ensemble estimates). Thus, we conclude that al-
lowing for a more flexible nuisance function is likely to be driving at least part of the differences
between the DML and the 2SLS (and OLS) estimates.

9Column 8 of Table 3 reports the first-stage estimated by OLS, including the full set of
covariates at once.

10The F test of the instrument is within the range of 8.30 and 19.90, depending on the ML
method used, with an average of 11.95. This is similar to the value of the F test for the instrument
in the 2SLS estimation, which is 11.15.
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Table 3: First stage estimates

(1) (2) (3) (4) (5) (6) (7) (8)
Lasso Reg. Tree Boosting Forest Neural Net. Ensemble Best OLS

Plough-positive crops 0.521 0.364 0.531 0.616 0.341 0.460 0.383 0.678
(0.160) (0.136) (0.157) (0.160) (0.154) (0.158) (0.156) (0.204)

Plough-negative crops 0.174 -0.071 0.134 0.080 0.193 0.208 0.178 0.232
(0.160) (0.151) (0.150) (0.176) (0.134) (0.147) (0.151) (0.204)

Observations 160 160 160 160 160 160 160 160

Notes: This table reports the results of the first-stage analysis of Table 2 Panel B. For the
DML analysis, the standard errors are adjusted for variability across splits using the median
method. Robust standard errors are reported in column 8.

via cross-validation, whenever possible/theoretically justifiable. For the remaining

parameters that are not data-driven (such as the number of trees, or the leaf

node size in the random forest), or for the algorithms for which adaptive tuning

parameters are not yet available (e.g. neural network), we use default values. We

detail the default parameter values in the implementation details section of the

Online Supplementary Material. For robustness, we perform extensive sensitivity

analysis on the values of these tuning parameters choices. We also implement

several activation functions in the neural network. The results, reported in the

online supplementary material, are in line with those reported in the main text.

Interestingly, once we increase the number of hidden layers to 4, with the number

of neurons set to 2, the DML-IV estimates for the neural network (Table 2 Panel

B) become significant for both activation functions, further supporting the results

of the other ML methods. Additionally, we perform robustness checks of our

DML results using an alternative score function, increasing the number of folds,

and trimming the propensity scores at 0.01 and 0.99. These results are reported

in the online supplementary material and confirm our main findings.

4 Discussion and Takeaways

This study revisited the main results of the paper by Alesina et al. (2013)

– obtained originally with traditional causal inference tools (OLS, IV) – with

recently developed CML methods. Our results using the new causal tools show a

negative and significant causal effect of the historical plough use on female labor

11



force participation, supporting the findings from Alesina et al. (2013). Although

the main conclusion is the same when using CML methods, there are a couple of

lessons we learned while performing this analysis, which could be of interest for

applied economics researchers.

First, this empirical paper is a good illustration on how causal machine learn-

ing methods can serve as useful tools for the empirical researcher to perform

supplementary analyses. In order to support the credibility of the empirical evi-

dence, researchers typically report a number of different model specifications and

evaluate the sensitivity of estimates to these alternatives – similar to the above-

mentioned robustness checks performed in the original paper. The usual approach

to evaluating the variability of estimates to different model specifications can be

somewhat ad-hoc and not a systematic way of implementing sensitivity analysis.

In addition, relevant covariates or interactions of these covariates which are not

considered important a priori by the researcher might be missed. Instead, causal

machine learning methods use systematic algorithms that compare a wide range

of model specifications for the nuisance functions and choose the one that best

fits the data. This makes them more robust methods for sensitivity analyses than

the current practice in the literature. Indeed, the example discussed here shows

that the robustness analysis performed with DML can suggest different conclu-

sions compared to the original paper’s robustness checks. Thus, we view causal

machine learning methods as promising tools for sensitivity analysis in empirical

work.

Second, this revisited empirical study illustrates the gains from combining

modern ML tools with quasi-experimental methods such as instrumental vari-

ables. While causal ML methods can make the unconfoundedness assumption

more plausible by flexibly controlling for observed confounders, they cannot ac-

count for unobserved confounders. In such settings, the researcher could combine

causal ML methods with quasi-experimental methods such as IV, which poten-

tially overcomes biases caused by unobserved factors. Integrating the two methods

could provide powerful tools for the researcher’s toolkit.

12
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Online Supplementary Material

A Implementation Details

Double Machine Learning. We obtain the DML estimation results with

100 splits and 2-fold cross-fitting. The reported estimates are median estimates

across the splits. The standard errors are adjusted using the median method due

to the variability resulting across the sample splits.

We report lasso estimates based on `1-penalized regressions, where we obtain

the penalty parameter via 10-fold cross-validation. For the lasso, we include as

controls the set of all raw covariates, the squared terms included in the original

analysis, and all first order interactions. For the other ML methods, the controls

are the set of raw covariates. The penalty parameter of the regression tree is

obtained with 10-fold cross-validation. The reported random forest results are

obtained with 1000 trees and the boosting results with 1000 boosted regression

trees. For the boosting, the minimum number of observations in the terminal

nodes is set to the default value of 1 and the fraction of randomly selected train-

ing observations is set to 0.5. For the neural networks, we used simple settings of

2 neurons, 1 hidden layer, and a decay parameter of 0.01. The baseline activation

function is set to the linear function. For sensitivity analysis we change the acti-

vation function from a linear to the nonlinear softplus function. This is a smooth

approximation of the Rectified Linear Unit (ReLU) function, commonly used in

the literature (see Table B.10 below on the DML-IV results). Furthermore, we

perform extensive robustness analyses on all the tuning parameters values of the

ML methods that are not obtained via cross-validation, such as the number of

trees for the random forest and boosting, the minimum number of observations in

the end nods, the number of neurons, number of hidden layers. We report some of

these results in Tables B.3 - B.10 below, for the DML-IV estimates. The results

are consistent with those reported in the main text. Notice also that when the

number of neurons is 2 and the hidden layers are increased to 4, the neural network

estimates become significant for both the linear and the SmoothReLU activation

functions, which corroborates the results found with the other ML methods.

The two hybrid methods used in our analysis are Ensemble and Best. Ensemble

is a weighted average from lasso, boosting, random forest and neural net. The

1



weights minimize the average means squared out-of-sample prediction error. Best

selects the best method among all the methods used, to estimate the nuisance

functions, in term of the average out-of-sample prediction error.

We perform sensitivity checks varying the number of splits and folds and the

results are very similar to those reported in the paper. We include in Table B.11

the results using 100 splits and 5 folds, and the results are overall consistent

with those using 2 folds. We also implement sensitivity analysis to using different

Neyman orthogonal score functions. Our main DML results are obtained using

the partialling out score. We explore robustness when using an alternative score

function (IV-type), using the DoubleML R package (Bach et al., 2021). The

DoubleML package currently does not allow the implementation of the IV-type

score for IV models with multiple instruments; thus, we perform this check for the

results in Table 1 and Panel A of Table 2. The estimates are reported in Table

B.12 and show that the results are not sensitive to the type of score function used.

Finally, results with trimmed propensity scores on Table 2 Panel B are reported

in Table B.13 and the results are consistent with our main findings.

Causal Forest. For the causal forest estimates, the values of the tuning

parameters are optimised via cross-validation, with the exception of the number

of trees, which is set to 2000. We also perform sensitivity checks with 500 and

1000 trees and the estimates are consistent with those reported in the main text.

The causal forest estimates are implemented with orthogonalization, as sug-

gested in Section 6.1.1 of Athey et al. (2019). This is particularly useful when

applying the method on observational studies. More precisely, we estimate the

marginal outcomes and the propensity score by training separate regression forests.

We then obtain the residual treatment and the residual outcome on which we fi-

nally train the causal forest.

Details on the Control Variables. When replicating the OLS robustness

analysis reported in Table 2 Panel A, we include the baseline control variables,

country fixed effects and the additional control variables. The additional covari-

ates include historical and contemporaneous variables. The additional historical

controls are: the intensity of agriculture; the proportion of subsistence provided

by hunting and by the herding of large animals; the fraction of countries’ ances-

2



tors without land inheritance rules, with patrilocal post-marital residence rules,

and with matrilocal post-marital rules; the fraction of countries’ ancestors with

a nuclear and an extended family structure; the average year the ethnicities were

sampled in the Ethnographic Atlas. The additional contemporary controls are:

years of civil and interstate conflicts (1816-2007); terrain ruggedness; whether a

country was under a communist regime after WWII; the fraction of a country’s

population with European descent; oil production per capita; agricultural, manu-

facturing and services shares of GDP; and the fraction of a country’s population

who is Catholic, Protestant, other Christian, Muslim, and Hindu. When repli-

cating the IV robustness analysis reported in Table 2 Panel B, we include the

baseline controls, country fixed effects, and the additional geo-climatic character-

istics added in Table A14 of the Online Supplement of the original paper. The

geo-climatic characteristics are: terrain slope, soil depth, average temperature, av-

erage precipitation. For the IV analysis with only one instrument (plough-positive

crops) reported in Table B.2, we also include plough-negative crops as a control

variable.

3



B Additional Tables

Table B.1: Analysis with Causal Forest

Female labor force participation

Traditional plough use -5.996
(4.071)

Observations 142

Notes: Analysis of the main OLS robustness check of Alesina et al. (2013) using the causal
forest. Standard errors are reported in parentheses.
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Table B.3: DML Sensitivity Analysis on Boosting, Varying the Number of Trees

Number of Trees: 500 Number of Trees: 2000

Plough use -39.476 -43.424
(15.062) (16.559)

Observations 160 160

Notes: Analysis of Alesina et al. (2013) using DML-IV. Standard errors adjusted for vari-
ability across splits using the median method are reported in parentheses.

Table B.4: DML Sensitivity Analysis on Boosting, Varying the Minimum Number
of Observations in the End Nodes

Min. No. of Observations: 3 Min. No. of Observations: 5

Plough use -43.553 -35.904
(14.769) (13.871)

Observations 160 160

Notes: Analysis of Alesina et al. (2013) using DML-IV. Standard errors adjusted for vari-
ability across splits using the median method are reported in parentheses.

Table B.5: DML Sensitivity Analysis on Boosting, Varying both the Number of
Trees and the Minimum Number of Observations in the End Nodes

No. of Trees: 500 No. of Trees 500
Min. No. of Observations: 3 Min. No. of Observations: 5

Plough use -39.448 -45.162
(14.475) (15.156)

Observations 160 160

No. of Trees: 2000 No. of Trees 2000
Min. No. of Observations: 3 Min. No. of Observations: 5

Plough use -40.960 -39.524
(15.002) (16.027)

Observations 160 160

Notes: Analysis of Alesina et al. (2013) using DML-IV. Standard errors adjusted for vari-
ability across splits using the median method are reported in parentheses.
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Table B.6: DML Sensitivity Analysis on Random Forest, Varying the Number of
Trees

Number of Trees: 500 Number of Trees: 2000

Plough use -30.185 -30.226
(15.138) (14.409)

Observations 160 160

Notes: Analysis of Alesina et al. (2013) using DML-IV. Standard errors adjusted for vari-
ability across splits using the median method are reported in parentheses.

Table B.7: DML Sensitivity Analysis on the Neural Net, Varying the Number of
Neurons

Number of Neurons: 3 Number of Neurons: 5

Plough use -15.592 -15.153
(22.778) (24.528)

Observations 160 160

Notes: Analysis of Alesina et al. (2013) using DML-IV. Standard errors adjusted for vari-
ability across splits using the median method are reported in parentheses.

Table B.8: DML Sensitivity Analysis on the Neural Net, Varying the Decay Pa-
rameter

Decay Parameter: 0.02 Decay Parameter: 0.05

Plough use -27.399 -26.729
(19.065) (17.550)

Observations 160 160

Notes: Analysis of Alesina et al. (2013) using DML-IV. Standard errors adjusted for vari-
ability across splits using the median method are reported in parentheses.
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Table B.9: DML Sensitivity Analysis on the Neural Net, Linear Activation Func-
tion, Varying the Number of Hidden Layers and the Number of Neurons per Layer

Hidden Layers: 2 Hidden Layers: 3 Hidden Layers: 4
Neurons per layer: 2 Neurons per layer: 2 Neurons per layer: 2

Plough use -26.268 -26.863 -13.621
(25.344) (30.356) (3.250)

Observations 160 160 160

Hidden Layers: 2 Hidden Layers: 3 Hidden Layers: 4
Neurons per layer: 4 Neurons per layer: 4 Neurons per layer: 4

Plough use -35.425 -27.363 -27.044
(22.606) (26.188) (29.753)

Observations 160 160 160

Notes: Analysis of Alesina et al. (2013) using DML-IV. Standard errors adjusted for vari-
ability across splits using the median method are reported in parentheses.

Table B.10: DML Sensitivity Analysis on the Neural Net, SmoothReLU Activation
Function, Varying the Number of Hidden Layers and the Number of Neurons per
Layer

Hidden Layers: 2 Hidden Layers: 3 Hidden Layers: 4
Neurons per layer: 2 Neurons per layer: 2 Neurons per layer: 2

Plough use -33.953 -37.394 -39.094
(18.997) (17.810) (18.104)

Observations 160 160 160

Hidden Layers: 2 Hidden Layers: 3 Hidden Layers: 4
Neurons per layer: 4 Neurons per layer: 4 Neurons per layer: 4

Plough use -30.346 -39.505 -40.553
(27.008) (22.416) (26.584)

Observations 160 160 160

Notes: Analysis of Alesina et al. (2013) using DML-IV. Standard errors adjusted for vari-
ability across splits using the median method are reported in parentheses.

8



T
ab

le
B

.1
1:

D
M

L
se

n
si

ti
v
it

y
an

al
y
si

s
w

it
h

5
fo

ld
s

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

L
a
ss

o
R

eg
.

T
re

e
B

o
o
st

in
g

F
or

es
t

N
eu

ra
l

N
et

.
E

n
se

m
b

le
B

es
t

O
L

S

P
a
n

el
A

:
D

M
L

,
P

a
rt

ia
ll

y
li

n
ea

r
m

od
el

w
it

h
fu

ll
se

t
o
f

co
n

tr
o
ls

.
O

u
tc

o
m

e:
F

em
a
le

la
bo

u
r

fo
rc

e

P
lo

u
gh

u
se

-4
.4

08
-2

.5
0
1

-5
.5

91
-4

.3
89

-4
.2

62
-4

.4
65

-4
.2

04
-9

.2
34

(4
.8

43
)

(4
.2

5
1)

(4
.0

29
)

(4
.1

67
)

(4
.4

55
)

(4
.2

19
)

(4
.1

56
)

(4
.3

01
)

O
b

se
rv

a
ti

on
s

1
4
2

14
2

1
42

14
2

14
2

14
2

14
2

14
2

L
a
ss

o
R

eg
.

T
re

e
B

o
o
st

in
g

F
or

es
t

N
eu

ra
l

N
et

.
E

n
se

m
b

le
B

es
t

2S
L

S

P
a
n

el
B

:
D

M
L

-I
V

.
O

u
tc

o
m

e:
F

em
a
le

la
bo

u
r

fo
rc

e

P
lo

u
gh

u
se

-4
8
.8

9
7

-4
7.

44
2

-4
7.

81
6

-4
3.

19
1

-2
0.

33
9

-4
0.

64
1

-4
4.

46
7

-2
8.

51
6

(2
1.

3
90

)
(2

6.
88

7
)

(1
7
.5

68
)

(1
7.

98
0)

(2
9.

52
9)

(2
2.

34
9)

(2
9.

47
0)

(7
.5

59
)

O
b

se
rv

a
ti

on
s

1
6
0

16
0

1
60

16
0

16
0

16
0

16
0

16
0

N
o
te

s:
A

n
al

y
si

s
of

th
e

m
ai

n
ro

b
u

st
n

es
s

ch
ec

k
s

of
A

le
si

n
a

et
a
l.

(2
0
1
3
)

u
si

n
g

D
M

L
.

T
h

e
D

M
L

m
et

h
o
d

is
im

p
le

m
en

te
d

u
si

n
g

1
0
0

sp
li

ts
a
n

d
5

fo
ld

s.
C

ol
u

m
n

8
re

p
or

ts
th

e
re

su
lt

s
of

th
e

m
os

t
co

m
p

le
te

ro
b

u
st

n
es

s
ch

ec
k
s

fo
r

th
e

O
L

S
a
n
d

IV
sp

ec
ifi

ca
ti

o
n

s
in

th
e

o
ri

g
in

a
l

p
a
p

er
.

S
ta

n
d

a
rd

er
ro

rs
ad

ju
st

ed
fo

r
va

ri
ab

il
it

y
ac

ro
ss

sp
li

ts
u

si
n

g
th

e
m

ed
ia

n
m

et
h

o
d

a
re

re
p

o
rt

ed
fo

r
th

e
D

M
L

es
ti

m
a
te

s.
R

o
b

u
st

st
a
n

d
a
rd

er
ro

rs
a
re

re
p

o
rt

ed
in

co
lu

m
n

8.

9



T
ab

le
B

.1
2:

D
M

L
S
en

si
ti

v
it

y
an

al
y
si

s
u
si

n
g

al
te

rn
at

iv
e

sc
or

e
fu

n
ct

io
n
,

p
ar

ti
al

ly
li
n
ea

r
m

o
d
el

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

L
as

so
R

eg
.

T
re

e
B

o
o
st

in
g

F
or

es
t

N
eu

ra
l

N
et

.
O

L
S

P
a
n

el
A

:
B

a
se

li
n

e
co

n
tr

o
ls

,
fe

m
a
le

la
bo

u
r

fo
rc

e
pa

rt
ic

ip
a
ti

o
n

2
0
0
0

P
lo

u
gh

u
se

-1
2.

53
-1

1.
72

7
-1

1
.9

9
9

-1
0.

8
33

-1
3
.0

2
-1

2
.4

0
1

(2
.7

3)
(3

.7
11

)
(3

.7
6
8
)

(2
.7

72
)

(5
.0

1
)

(2
.9

64
)

P
a
n

el
B

:
B

a
se

li
n

e
co

n
tr

o
ls

,
sh

a
re

o
f

fi
rm

s
w

it
h

fe
m

a
le

o
w

n
er

sh
ip

P
lo

u
gh

u
se

-1
1.

08
3

-1
3.

13
5

-1
3
.5

52
-1

2.
57

5
-1

2.
3
11

-1
5.

2
41

(3
.1

71
)

(4
.8

94
)

(5
.5

2
5
)

(3
.7

97
)

(5
.6

5
5)

(4
.0

6)

P
a
n

el
C

:
B

a
se

li
n

e
co

n
tr

o
ls

,
sh

a
re

o
f

po
li

ti
ca

l
po

si
ti

o
n

s
h
el

d
by

w
o
m

en
2
0
0
0

P
lo

u
gh

u
se

-2
.1

30
-5

.4
18

-5
.2

6
8

-5
.4

21
-6

.1
17

-4
.8

2
1

(1
.5

92
)

(2
.3

06
)

(2
.0

4
2
)

(1
.5

50
)

(2
.8

1
0)

(1
.7

8
2
)

P
a
n

el
D

:
F

u
ll

se
t

o
f

co
n

tr
o
ls

,
fe

m
a
le

la
bo

u
r

fo
rc

e
pa

rt
ic

ip
a
ti

o
n

2
0
0
0

P
lo

u
gh

u
se

-1
1.

11
3

-7
.2

96
-6

.5
5
1

-6
.4

55
-7

.5
20

-9
.2

34
(3

.4
23

)
(6

.1
08

)
(4

.9
5
4
)

(3
.4

78
)

(8
.5

63
)

(4
.3

01
)

N
o
te

s:
A

n
al

y
si

s
of

T
ab

le
4

(c
ol

u
m

n
s

1,
3,

5)
an

d
of

th
e

m
a
in

O
L

S
ro

b
u

st
n

es
s

ch
ec

k
o
f

A
le

si
n

a
et

a
l.

(2
0
1
3
)

u
si

n
g

D
M

L
,

im
p

le
m

en
ti

n
g

th
e

IV
-t

y
p

e
sc

or
e

fu
n
ct

io
n

.
C

ol
u

m
n

6
re

p
or

ts
th

e
or

ig
in

al
p

ap
er

re
su

lt
s.

S
ta

n
d

a
rd

er
ro

rs
a
d

ju
st

ed
fo

r
va

ri
a
b

il
it

y
a
cr

o
ss

sp
li

ts
u

si
n

g
th

e
m

ed
ia

n
m

et
h

o
d

a
re

re
p

or
te

d
fo

r
th

e
D

M
L

es
ti

m
at

es
.

R
ob

u
st

st
an

d
ar

d
er

ro
rs

a
re

re
p

o
rt

ed
in

co
lu

m
n

6
.

10



T
ab

le
B

.1
3:

D
M

L
S
en

si
ti

v
it

y
an

al
y
si

s
tr

im
m

in
g

ex
tr

em
e

va
lu

es
of

p
ro

p
en

si
ty

sc
or

e,
D

M
L

-I
V

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

L
as

so
R

eg
.

T
re

e
B

o
os

ti
n
g

F
or

es
t

N
eu

ra
l

N
et

.
O

L
S

P
lo

u
gh

u
se

-3
8.

36
4

-2
4
.9

8
1

-3
7.

82
2

-3
4.

43
2

-2
5.

24
5

-2
8.

51
6

(1
6.

84
8)

(1
5.

25
7)

(1
4.

86
0)

(1
3.

6
24

)
(2

1.
83

0)
(7

.5
59

)
O

b
se

rv
at

io
n
s

16
0

1
60

16
0

16
0

16
0

16
0

N
o
te

s:
A

n
al

y
si

s
of

th
e

m
ai

n
IV

ro
b

u
st

n
es

s
ch

ec
k

of
A

le
si

n
a

et
a
l.

(2
0
1
3
)

u
si

n
g

D
M

L
.

T
h

e
p

ro
p

en
si

ty
sc

o
re

s
a
re

tr
im

m
ed

a
t

0
.0

1
a
n

d
0
.9

9
.

C
o
lu

m
n

6
re

p
or

ts
th

e
or

ig
in

al
p

ap
er

re
su

lt
s.

S
ta

n
d

ar
d

er
ro

rs
a
d

ju
st

ed
fo

r
va

ri
a
b

il
it

y
a
cr

o
ss

sp
li

ts
u

si
n

g
th

e
m

ed
ia

n
m

et
h

o
d

a
re

re
p

o
rt

ed
fo

r
th

e
D

M
L

es
ti

m
at

es
.

R
ob

u
st

st
an

d
ar

d
er

ro
rs

ar
e

re
p

or
te

d
in

co
lu

m
n

6
.

11


	Introduction
	Description of the Original Analysis
	Causal Machine Learning Analysis
	Results

	Discussion and Takeaways
	Implementation Details
	Additional Tables

